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Obesity is a major risk for patients with chronic metabolic
disorders including type 2 diabetes. Sonic hedgehog (Shh) is a
morphogen that regulates the pancreas and adipose tissue for-
mation during embryonic development. Peroxisome prolifera-
tor-activated receptor � (PPAR�) is a member of the nuclear
receptor superfamily and one of the most important regulators
of insulin action. Here, we evaluated the role and mechanism of
Shh signaling in obesity-associated insulin resistance and char-
acterized its effect on PPAR�. We showed that Shh expression
was up-regulated in subcutaneous fat from obese mice. In dif-
ferentiated 3T3-L1 and primary cultured adipocytes from rats,
recombinant Shh protein and SAG (an agonist of Shh signaling)
activated an extracellular signal–regulated kinase (ERK)-depen-
dent noncanonical pathway and induced PPAR� phosphoryla-
tion at serine 112, which decreased PPAR� activity. Meanwhile,
Shh signaling degraded PPAR� protein via binding of PPAR� to
neural precursor cell-expressed developmentally down-regu-
lated protein 4-1 (NEDD4-1). Furthermore, vismodegib, an
inhibitor of Shh signaling, attenuated ERK phosphorylation
induced by a high fat diet (HFD) and restored PPAR� protein
level, thus ameliorating glucose intolerance and insulin resis-
tance in obese mice. Our finding suggests that Shh in subcuta-
neous fat decreases PPAR� activity and stability via activation
of an ERK-dependent noncanonical pathway, resulting in
impaired insulin action. Inhibition of Shh may serve as a poten-
tial therapeutic approach to treat obesity-related diabetes.

Insulin is a crucial anabolic hormone that stimulates the
metabolism of carbohydrates, lipids, and proteins. Adipose tis-
sue receives insulin signals and is responsible for plasma glu-
cose clearance by stimulating its uptake and utilization (1). An
inability of tissues to adequately respond to insulin leads to
impaired glucose homeostasis and the pathogenesis of type 2
diabetes (2). Obesity resulting from inappropriate food intake is
commonly accompanied by metabolic disorders, such as elec-
trolyteimbalance,hyperuricemia,dyslipidemia,andinsulinresis-

tance (3). Type 2 diabetes is frequently associated with an accu-
mulation of visceral adipose tissue (4). Nonetheless, the
predominant storage of fat in the subcutaneous adipose tissue is
indicative of a better metabolic profile (5). The molecular
mechanism behind these clinical observations remains un-
known. In adipocytes, insulin signaling starts from the binding
of insulin to its receptor, leading to the phosphorylation of insu-
lin receptor substrate-1 (IRS-1).2 Activated phosphoinositide
3-kinase (PI3K) triggers the production of specific phosphoi-
nositides, which recruit protein kinase B (Akt) to the plasma
membrane (6). Subsequent Akt phosphorylation is responsible
for most of the metabolic actions of insulin, such as glucose
uptake by inducing the translocation of glucose transporter 4
from intracellular storage to the plasma membrane (7). Thus,
Akt phosphorylation normally serves as a downstream marker
of insulin. ERK and c-Jun N-terminal kinase (JNK) activations
negatively regulate insulin signaling through serine phosphor-
ylation of IRS-1 (8).

Hedgehog (Hh) proteins, including Shh, Indian hedgehog
(Ihh), and Desert hedgehog (Dhh), were initially defined as
morphogens that regulate the embryo development (9). In
mammals, Hh binding to the inhibitory receptor Patched leads
to the activation of the cell-surface receptor Smoothened (Smo)
and subsequently drives the transcription of Gli target genes
(10). Although most Hh-induced biological effects result from
the transcriptional program, several noncanonical pathways
have been reported, such as mitogen-activated protein kinase
ERK (11). Hh signaling is normally quiescent in adults, except
during various pathologies, such as cancers (12), immune-de-
myelinating neuropathy (13), and polycystic kidney disease
(14). Shh inhibits adipocyte differentiation by diverting preadi-
pocytes away from adipogenesis (15), which is implicated in the
development of white adipose tissue (16). The Hh-Gli2 axis
drives lipogenesis in adipocytes, leading to increased obesity in
adult mice (17). Moreover, Shh-related ciliopathy is involved in
obesity, cognitive impairment, and limb deformities, which has
been defined as Bardet-Biedl syndrome in humans (18). Shh
regulates epithelial and �-cell expansion during early pancreas
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morphogenesis (19). Excessively activated Hh signaling impairs
�-cell function and insulin secretion, resulting in glucose intol-
erance in adult mice (20, 21). Furthermore, hepatic Hh signal-
ing contributes to the progression of nonalcoholic fatty liver
diseases by promoting liver inflammation (22). Similarly, its
signaling in myeloid cells of adipose tissue is suggested to be a
trigger of type 2 diabetes (23).

PPAR� is a member of the nuclear receptor superfamily and
a master regulator of insulin action. Although specific deletion
of PPAR� in muscle, liver, macrophages, or brain alters glu-
cose homeostasis and induces insulin resistance (24 –28),
adipose tissue is the major site for insulin sensitizing by
PPAR� (29). Rosiglitazone, a selective agonist of PPAR�, has
been used to treat type 2 diabetes with a glucose lowering
effect. Due to side effects including heart failure, rosiglita-
zone has been withdrawn from the first-line therapy in clin-
ical practice (30). Hence, identifying PPAR� regulators as
therapeutic targets would be a novel approach in the treat-
ment of type 2 diabetes.

In this study, we demonstrate that Shh in subcutaneous
adipose tissue decreases the activity and stability of PPAR�
by activating the ERK-dependent noncanonical pathway.
Conversely, vismodegib, an inhibitor of Shh signaling,
improves obesity-related insulin resistance by stabilizing
PPAR�.

Results

Shh is induced in subcutaneous adipose tissue from obese
mice

To determine whether Hh ligands are implicated in obesity,
C57Bl/6 mice were first fed with a HFD for 12 weeks. The mice
developed pronounced obesity (Fig. S1A) with no difference in
food intake (Fig. S1B). Glucose tolerance test (Fig. S1C) and
insulin tolerance test (Fig. S1D) revealed impaired insulin sen-
sitivity in these mice. Next, we measured the expressions of
Shh, Ihh, and Dhh in subcutaneous, epididymal and brown adi-
pose tissues. ELISA was used to detect the protein level of Shh
because of its better sensitivity. Compared with lean mice, both
mRNA (Fig. 1A) and protein (Fig. 1B) levels of Shh were signif-
icantly increased in subcutaneous fat from obese mice.
Although a slight augmentation of Shh mRNA was observed in
epididymal and brown adipose tissues, no difference was found
at the protein level. No differential expression of Ihh (Fig. 1C)
and Dhh (Fig. 1D) was observed in subcutaneous, epididymal,
and brown adipose tissues.

Shh decreases PPAR� protein level via an ERK-dependent
noncanonical pathway

To determine the involvement of Shh signaling in adipocytes,
we treated the differentiated 3T3-L1 adipocytes with recombi-
nant Shh protein or SAG, a Smo agonist, for the indicated times
or with different doses. Recombinant Shh and SAG activated
the mitogen-activated protein kinase pathway with a maximum
ERK phosphorylation at 1 h after stimulation (Fig. 2A). ERK
phosphorylation induced by recombinant Shh and SAG
occurred in a dose-dependent manner (Fig. 2B). In primary rat
adipocytes, ERK phosphorylation was also increased by recom-

binant Shh and SAG (Fig. 2C). These results indicate that Shh
signaling activates the ERK pathway in adipocytes.

Because Ser-112 of PPAR� negatively regulates insulin
action in adipocytes (31), we examined the effect of recombi-
nant Shh protein on p-PPAR�Ser-112. Recombinant Shh
increased PPAR� phosphorylation at Ser-112 in differentiated
3T3-L1 and primary rat adipocytes. This phosphorylation was
attenuated by siRNA against Smo (Fig. 2D) or vismodegib (Fig.
2E), indicating a Smo-dependent mechanism. The efficiency of
siRNA against Smo was tested by RT-qPCR (Fig. S2). Moreover,
SAG increased p-PPAR�Ser-112, which was attenuated by
PD98059, an ERK inhibitor. This indicates that p-PPAR�Ser-112

depends on the Shh-activated ERK pathway (Fig. 2F). In addi-
tion, Shh decreased the PPAR� protein level 24 h after stimu-
lation. Smo siRNA (Fig. 2G) or vismodegib restored Shh-de-
creased PPAR� (Fig. 2H). In parallel, SAG-decreased PPAR�
was restored by PD98059 (Fig. 2I), demonstrating that ERK
phosphorylation by Shh signaling is involved in PPAR�
degradation.

To study the cross-talk between the ERK-dependent nonca-
nonical and Gli-dependent canonical pathways we investigated
the effect of PD98059 on Gli1 activation in 3T3-L1 and primary
rat adipocytes. SAG-induced Gli1 activation was not attenu-
ated by PD98059 (Fig. 2J). These data confirm that ERK phos-
phorylation and Gli activation are 2 independent pathways.
Taken together, these findings suggest that Shh-increased ERK
phosphorylation promotes PPAR� phosphorylation at Ser-112
and decreases the protein level of PPAR�.

Shh decreases PPAR� stability via a ubiquitin-dependent
mechanism

To explore how Shh signaling decreased the PPAR� protein
level, PPAR�-transfected HEK 293 cells were pretreated with
cycloheximide and then exposed to SAG. As shown in Fig. 3A,
SAG significantly increased PPAR� degradation. Pretreatment

Figure 1. Expression of Hh ligands in adipose tissues of obese mice. Data
were obtained from mice fed with a ND or HFD for 12 weeks (n � 6 in each
group). Levels of Shh mRNA (A) and protein (B) in subcutaneous (Sub), epidid-
ymal (Epi), and brown adipose tissues from lean and obese mice were mea-
sured using RT-qPCR and ELISA, respectively. Ihh (C) and Dhh (D) mRNA levels
in subcutaneous, epididymal, and brown adipose tissues are shown. The
results were normalized to the level of cyclophilin mRNA. *, p � 0.05; NS, no
significance.
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with the proteasome inhibitor MG132 significantly prevented
the SAG-triggered decrease in PPAR� protein level (Fig. 3B),
indicating a role of the proteasome in PPAR� degradation.
Depletion of the E3 ubiquitin ligase NEDD4-1 led to PPAR�
accumulation (Fig. 3C). Co-immunoprecipitation indicated
that the binding of NEDD4-1 to PPAR� was largely augmented
by SAG treatment (Fig. 3D). Next, we determined if Shh signal-
ing promoted PPAR� ubiquitination. The level of ubiquitinated
PPAR� was markedly higher in SAG-treated cells (Fig. 3E). Col-

lectively, these data indicate that Shh signaling enhances
PPAR� degradation via NEDD4-1– dependent ubiquitination.

Vismodegib improves insulin sensitivity in obese mice induced
by a HFD

We assessed the potential therapeutic effects of vismodegib
on insulin resistance in mice fed a HFD. Vismodegib treatment
slightly decreased the body weight of both mice fed with a nor-
mal (ND) or HFD. No statistical differences were observed

Figure 2. PPAR� protein level is decreased via the ERK pathway in adipocytes. A-C, differentiated 3T3-L1 adipocytes were serum-starved and then
incubated with Shh (0.5 �g/ml) or SAG (0.5 �mol/liter) for the indicated times (A). Serum-starved 3T3-L1 adipocytes were treated with different
concentrations of Shh (0, 0.1, 0.2, 0.5, 1, and 2 �g/ml) or SAG (0, 0.1, 0.2, 0.5, 1, and 2 �mol/liter) for 60 min (B). C, primary rat adipocytes (2 � 105

cells/well) after serum starvation were treated with Shh (0.5 �g/ml) or SAG (0.5 �mol/liter) for 60 min. The level of p-ERK and ERK was analyzed using
immunoblotting. D–F, before incubation with Shh (0.5 �g/ml) for 60 min, 3T3-L1 or primary rat adipocytes were transfected with siRNA against Smo (D)
or pretreated with vismodegib (100 nmol/liter, E) for 30 min. F, PD98059 (PD, 10 �mol/liter)-pretreated cells were exposed to SAG (0.5 �mol/liter) for 60
min. Levels of p-PPAR� and PPAR� was analyzed by using immunoblotting. G–I, Smo siRNA-transfected (G) or vismodegib-pretreated (H) cells were
incubated with Shh (0.5 �g/ml) for 24 h. I, PD98059 (PD, 10 �mol/liter)-pretreated cells were exposed to SAG (0.5 �mol/liter) for 24 h. Levels of PPAR�
and �-actin were analyzed using immunoblotting. Immunoblots shown are representative of 3 independent experiments. J, differentiated 3T3-L1 (left)
and primary rat adipocytes (right) were pretreated with or without PD98059 (PD, 10 �mol/liter) for 30 min, and then exposed to SAG (0.5 �mol/liter) for
24 h. Cell lysates were analyzed to determine the mRNA level of Gli1. The results were normalized to the level of cyclophilin mRNA. Data were from 3
independent experiments performed in triplicate. *, p � 0.05; NS, no significance.

Figure 3. Shh signaling decreased PPAR� stability via NEDD4-1– dependent ubiquitination. HEK 293 cells were transfected with PPAR� overexpression
plasmid. A, cells were pretreated with cyclohexamide (CHX) (5 �g/ml) for 30 min before exposure to SAG (0.5 �mol/liter), followed by immunoblotting to detect
PPAR� and �-actin (left). Quantifications of band intensity normalized to �-actin (right). B, cells were incubated with SAG (0.5 �mol/liter) for 24 h in the presence
or absence of MG132 (10 �mol/liter) pretreatment. C, cells were infected with scramble shRNA lentivirus or different lentiviral shRNA constructs against
NEDD4-1. PPAR�, NEDD4-1, and �-actin levels were analyzed by immunoblotting. D, immunoblotting (IB) of whole cell lysates (Input) and immunoprecipitates
(IP) from PPAR�-overexpressing HEK 293 cells with or without SAG (0.5 �mol/liter) treatment for 24 h. MG132 (10 �mol/liter) was added to the medium 12 h
before collecting. E, PPAR�-transfected HEK 293 cells were pretreated with MG132 (10 �mol/liter) and then incubated with or without SAG (0.5 �mol/liter) for
24 h. PPAR� was immunoprecipitated from cell lysates and immunoblotted with an anti-ubiquitin antibody (left). Band intensities were normalized to that of
IgG (right). Immunoblots shown are representative of 3 independent experiments. *, p � 0.05.
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between the two groups (Fig. 4A). Vismodigib did not affect
body weight in either ND- or HFD-fed mice after 16 days of
treatment (Fig. 4B). Food intake did not differ with vismodegib
treatment (Fig. 4C). However, vismodegib significantly im-
proved HFD-induced impairment of glucose tolerance (Fig.
4D) and insulin sensitivity (Fig. 4E). A HFD impaired insulin
secretion after glucose stimulation as assessed by the insulin
level in the blood. Vismodegib did not affect the glucose-in-
duced insulin level in mice fed with either a ND or HFD (Fig.
4F). Accordingly, the level of p-Akt (Ser-473), a downstream
marker of insulin signaling, was increased in ND-fed mice with

vismodegib treatment compared with the vehicle group.
Importantly, vismodegib restored the HFD-attenuated p-Akt
level (Fig. 4G). These results indicate that inhibition of Shh
signaling improves HFD-induced insulin resistance.

Vismodegib inhibits ERK activation in subcutaneous adipose
tissue of obese mice

Because Gli1 induction is a main reporter of Hh signaling
activation, we investigated the effect of vismodegib on Gli1 acti-
vation. Expression of Gli1 was up-regulated in adipose tissue of
HFD-fed mice. Surprisingly, the induction was not attenuated

Figure 4. Vismodegib improved insulin resistance in obese mice. Mice fed a ND or HFD for 12 weeks (n � 6 in each group) were injected with vismodegib
every other day at a dose of 5 mg/kg. A, body weight was measured before every injection. NS: ND V.S. ND�vismo, NS: HFD V.S. HFD�vismo. B, body weights
of ND- or HFD-fed mice before and after vismodegib treatment. C, level of average food intake during vismodegib treatment. Glucose tolerance test (D) and
insulin tolerance test (E) of ND- or HFD-fed mice with or without vismodegib treatment. *, HFD V.S. HFD�vismo. Areas under the curve (AUC) were determined.
F, level of serum insulin in ND- or HFD-fed mice with vismodegib treatment before and after insulin injection (30 min). G, protein levels of p-Akt and Akt in
subcutaneous adipose tissue were measured by immunoblotting. Quantifications of band intensity was normalized to �-actin (right). F, tail vein blood was
sampled before and 30 min after glucose injection for the measurement of insulin level. *, p � 0.05; NS, no significance.
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by vismodegib (Fig. 5A), potentially implying noncanonical
pathways. Vismodegib significantly attenuated ERK phosphor-
ylation in HFD-fed mice (Fig. 5B).

Vismodegib restores PPAR� protein level in adipose tissue of
obese mice

To confirm the effect of vismodegib on the decreased PPAR�
protein level as demonstrated in vitro, we investigated the
PPAR� level in subcutaneous fat of mice fed with a ND and
HFD. Compared with the vehicle group, the PPAR� protein
level did not significantly change in ND mice upon vismodegib
treatment. However, vismodegib significantly restored the
PPAR� protein level in HFD mice (Fig. 6A). Vismodegib did not
affect the PPAR� mRNA level in either ND- or HFD-fed mice
(Fig. 6B). Furthermore, it also restored HFD-decreased expres-
sion of PPAR� target genes, including adiponectin and CD36
(Fig. 6C).

Discussion

Obesity is a medical condition associated with the accumu-
lation of excess body fat, triggering metabolic disorders, such as
type 2 diabetes (32). Perturbation of fatty acid metabolism is a
major factor contributing to whole-body insulin resistance.
Fatty acid-induced inflammation and cellular lipid overload
inhibit insulin signaling by triggering endoplasmic reticulum
stress and oxidative stress (33).

Clinical studies have demonstrated that excess accumulation
of visceral adipose tissue is associated with cardio-metabolic
risk factors (4). Subcutaneous adipose tissue shows a better
metabolic outcome (5). The underlying molecular mechanism
remains poorly understood. Our study provides a detailed anal-
yses of the expression of three Hh ligands in epididymal, sub-
cutaneous, and brown fat tissues. Here, we report that Shh
expression was increased in subcutaneous fat, whereas it
remained unchanged in epididymal and brown fat. This may

explain the observation that the PPAR� protein level was
decreased mainly in subcutaneous adipose tissue. We did not
detect differential expression of Ihh or Dhh in any of the three
adipose tissues. In mammals, the 3 Hh genes are located on
different chromosomes but have highly conserved sequences at
the protein level. Shh shares 91 and 76% identity with Ihh and
Dhh, respectively. Ihh has 80% identity with Dhh (34). All three
ligands share the same downstream signaling.

Although investigations typically rely on the Gli-dependent
canonical pathway, several noncanonical signaling pathways
have been reported. For instance, rapid induction of Src family
kinases by Shh is implicated in spatial axonal outgrowth (35).
Hh signaling triggers Warburg-like metabolic reprogramming
via a Smo–Ca2�–AMP-activated protein kinase axis (36). Shh,
Ihh, and Dhh drive cytoskeletal rearrangement and endothelial
migration via a Smo-Rho A axis (37). Furthermore, Shh acti-
vates PI3K to promote mural cell migration and recruitment
into neovessels (11). We found that ERK phosphorylation was
enhanced by Shh signaling in adipocytes. This noncanonical
pathway of ERK activation was mediated by Smo, a member of
the G protein– coupled receptor superfamily.

The nuclear receptor PPAR� is a transcription factor and a
master regulator of adipogenesis and glucose metabolism (38).
In addition to its transcriptional regulation, activity and sta-
bility of the PPAR� protein are under precise posttranscrip-
tional modifications, including phosphorylation, ubiquitina-
tion, SUMOylation, O-GlcNAcylation, and S-nitrosylation
(27, 39 – 41). Site-specific phosphorylation of PPAR� at Ser-
112 by MAPK inhibits PPAR� activity during adipogenesis
and insulin action (42), whereas PPAR� agonists cause its
phosphorylation at serine 273 by cyclin-dependent kinase 5,
leading to its nuclear translocation (31). Our data demon-
strated that Shh signaling–induced PPAR� phosphorylation
at Ser-112 was responsible for the decreased PPAR� activity

Figure 5. Vismodegib treatment affected the ERK pathway in obese mice. Mice fed a ND or HFD for 12 weeks (n � 6 in each group) were injected with
vismodegib every other day at a dose of 5 mg/kg. After sacrifice, the subcutaneous adipose tissues were immediately dissected and underwent quick-freezing
in liquid nitrogen. A, level of Gli1 mRNA was measured by RT-qPCR. The result was normalized to the level of cyclophilin. B, protein levels of p-ERK and ERK in
subcutaneous adipose tissue were measured by immunoblotting. Quantification of band intensity normalized to �-actin (right). *, p � 0.05; NS, no significance.
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in adipocytes. In parallel, the Shh/Smo/ERK axis decreased
the PPAR� protein level. Furthermore, the E3 ubiquitin
ligases, CUL4B, FBXO9, MuRF2, MuRF3, and Siah2 regulate
PPAR� ubiquitination in adipocytes, thus decreasing adipo-
genesis and lipogenesis (40, 43– 46). Other E3 ligases, such
as MKRN1 and MDM2, are also involved in PPAR� ubiquiti-
nation and proteasome-dependent degradation (47, 48).
NEDD4-1, homologous to the E6-AP C terminus-type E3
ubiquitin ligase, plays crucial roles in mediating ubiquitin-
dependent trafficking and degradation (49). It has been
shown to target PPAR� via binding to a highly conserved
proline–proline–X–tyrosine (PPXY) motif (50, 51). We
found that the Shh-driven PPAR� degradation was mediated
by a ubiquitin-dependent pathway via binding of PPAR� to
NEDD4-1 because knockdown of NEDD4-1 preserved the
PPAR� protein level. However, the exact link between the
Shh-triggered phosphorylation and NEDD4-1–mediated
PPAR� ubiquitination warrant further investigation.

One question of interest is whether other nuclear receptors
could be regulated by the Hh-triggered and phosphorylation-
dependent ubiquitination. In this regard, we looked at the
PPAR� protein level, another member of the PPAR subfamily
expressed in adipose tissues. Vismodegib did not have a signif-
icant effect on the PPAR� protein level in adipose tissues of
either ND-fed or HFD mice (Fig. S3). The third member of this
subfamily, PPAR�, is mainly expressed in the liver, but not in
adipose tissue (52). RXR�, the dimerization partner of PPARs,
is not affected by a HFD in mice (53). PPAR� degradation by
Shh signaling may explain the impaired formation of the
PPAR�/RXR heterodimer in insulin resistance. In addition,
LXR agonists increase GLUT4 expression, resulting in insulin-

mediated glucose uptake into adipose tissue (54). SREBP is also
a key transcription factor controlling the synthesis of choles-
terol and triglycerol (55). Potential cross-talk between Hh sig-
naling and these metabolic regulators certainly warrants fur-
ther investigation.

Recently, the Hh signaling pathway was implicated in metab-
olism and the pathogeneses of several metabolic diseases. Shh
signaling switches preadipocytes away from adipogenesis and
instead drives them toward osteogenesis. Shh-related ciliopa-
thy is involved in Bardet-Biedl syndrome in humans with severe
obesity (18). The Hh-activated Smo–Ca2�–AMP-activated
protein kinase axis is involved in Warburg-like metabolic
reprogramming (36). Hh signaling promotes the hepatic in-
flammatory state and controls the progression of nonalcoholic
fatty liver diseases (22). Insulin resistance is triggered by Hh
signaling in inflammatory cells of obese mice (23). In this study,
we provide evidence that Shh-mediated PPAR� ubiquitination
via NEDD4-1 is a novel mechanism to illustrate the impaired
insulin action in type 2 diabetes.

Vismodegib is the first Hh pathway inhibitor approved in the
United States and Europe for the treatment of basal cell carci-
noma (56). Recently, Kwon et al. (22) found that intraperitoneal
administration of vismodegib decreases hepatic fat accumula-
tion in mice via anti-inflammatory effects. In our study, vismo-
degib slightly decreased body weight in both ND-fed and HFD
mice with statistical significance observed only at a single time
point. However, the body weights before and after treatment
were not statistically significantly different. Because the sample
size was relatively small, we cannot conclude that vismodegib
affects body weight. In addition to demonstrating a novel
mechanism by which Hh signaling attenuates PPAR� action,

Figure 6. Vismodegib restored PPAR� protein levels in subcutaneous fat of obese mice. Mice fed a ND or HFD for 12 weeks (n � 6 in each group) were
injected with vismodegib every other day at a dose of 5 mg/kg. After sacrifice, the subcutaneous adipose tissues were immediately dissected and underwent
quick-freezing in liquid nitrogen. The protein level of PPAR� in subcutaneous adipose tissue was measured by immunoblotting (left). Quantification of band
intensity normalized to �-actin (right). The mRNA levels of PPAR� (B) and PPAR�-targeted genes (C) were measured by RT-qPCR. The results were normalized
to the level of cyclophilin. *, p � 0.05; NS, no significance.
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our study also provides the first proof of concept that Hh inhi-
bition may represent a new therapeutic strategy to treat meta-
bolic disease featuring with insulin resistance.

Taken together, our data demonstrate that Shh signaling in
subcutaneous adipose tissue leads to PPAR� degradation via
NEDD4-1–mediated ubiquitination. These results also provide
evidence that Shh-induced ERK phosphorylation is a trigger of
decreased PPAR� activity and stability (Fig. 7). Improved insu-
lin sensitivity by vismodegib treatment indicates that Shh sig-
naling could be a potential therapeutic target in type 2 diabetes.

Experimental procedures

Reagents

Murine recombinant Shh protein was from Shenandoah Bio-
technology, Warwick, PA (catalog number 200-55), and dis-
solved in PBS containing 0.2% BSA. Vismodegib, SAG, and
PD98059 were from Selleck Chemicals (Houston, TX). Cyclo-
hexamide was from Cayman Chemical (Ann Arbor MI). Anti-
bodies against p-Akt, Akt, p-ERK, ERK, p-JNK, JNK, PPAR�,
and NEDD4-1 were from Cell Signaling Biotechnology (Dan-
vers, MA). Rabbit IgG and antibody against �-actin were from
Santa Cruz Biotechnology (Santa Cruz, CA).

Cell culture

3T3-L1 preadipocytes and HEK 293 cells were maintained in
Dulbecco’s modified Eagle’s medium supplemented with 10%
FBS in a humidified 5% CO2 atmosphere at 37 °C. To obtain
mature adipocytes, 3T3-L1 cells (1.5 � 105/well) were differen-

tiated in 12-well plates by supplementing with 3-isobutyl-1-
methylxanthine, insulin, and dexamethasone.

To obtain primary rat adipocytes, male Sprague-Dawley rats
were sacrificed, and the epididymal adipose tissues were then
dissected. After incubation with type I collagenase (1 mg/ml)
and 1% BSA, the homogenate was filtered through a 50-�m
nylon mesh and washed three times in PBS containing 1% BSA.
After centrifugation, the adipocytes were re-suspended in Dul-
becco’s modified Eagle’s medium:F-12 medium containing 20%
FBS and then incubated in a humidified 5% CO2 atmosphere at
37 °C. Cells were seeded into 12-well plates (2 � 105 cells/well).
Differentiated 3T3-L1 or primary rat adipocytes were synchro-
nized with serum starvation (0.5% FBS) for 12 h treatment with
vismodegib (100 nmol/liter), PD98059 (10 �mol/liter), recom-
binant Shh protein (0.5 �g/ml), or SAG (0.5 �mol/liter).

Animal procedures

Male Sprague-Dawley rats and C57BL/6 mice were bred with
controlled temperature (25 °C) and a 12-h light and dark cycle.
Animal experiments were approved by the institutional ethics
review board of Xi’an Jiaotong University (XJTULAC2015-
404), and performed in accordance with the NIH guidelines for
the care and use of animals. Mice at 8 weeks were fed a HFD
(60% fat) or kept on ND (Research Diets, New Brunswick, NJ).
Twelve weeks later, mice were treated with intraperitoneal
injections of vehicle or vismodegib (5 mg/kg) every other day.
Food intake and body weight were measured before every injec-
tion and followed every other day.

Glucose tolerance test and insulin tolerance test

For the glucose tolerance test, mice were food-deprived over-
night for 14 h with free water supply. Glucose (2 mg/kg) was
intraperitoneally injected and blood glucose was determined at
15, 30, 60, and 120 min after the injection. For the insulin tol-
erance test, mice intraperitoneally received recombinant insu-
lin (0.8 units/kg, Humulin, Eli Lilly and Co., IN). Blood glucose
was determined at 0, 15, 30, 60, and 120 min after the injection.

Transfection and lentiviral infection

HEK 293 cells were transfected with a PPAR� expression
plasmid using Lipofectamine 2000 (Invitrogen). Experiments
were performed 48 h post-transfection. Lentiviruses expressing
shRNA–NEDD4-1 were packaged by transfecting 293T cells
with pLKO–shRNA constructs. Lentiviral infection was per-
formed using virus-containing media with 4 mg/ml of
Polybrene.

RNA extraction, reverse transcriptase-quantitative PCR
(RT-qPCR)

Total RNA was extracted by using TRIzol (Invitrogen). RT-
qPCR was performed using SYBR Green (Promega, Madison,
WI). Primer sequences were described in Table S1. Cyclophilin
was used as an internal control.

Immunoblotting, enzyme-linked immunosorbent assay
(ELISA), and immunoprecipitation

Proteins were extracted in RIPA buffer supplemented with
protease and phosphatase inhibitors. Protein concentrations

Figure 7. Role of Shh signaling in obesity-induced insulin resistance.
Increased Shh expression in subcutaneous fat of obese mice activates p-ERK,
which phosphorylates PPAR� at serine 112, leading to an impaired PPAR�
activity. On the other hand, Shh-activated ERK phosphorylation promotes
NEDD4-1– dependent PPAR� ubiquitination and degradation. Transcription
of PPAR�-targeted genes is therefore reduced, leading to an impaired insulin
action. Thus, by targeting the Shh receptor Smo, vismodegib instigates HFD–
induced insulin resistance in obese mice.
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were measured using the BCA protein assay. Immunoblotting
was performed with appropriate primary antibodies and horse-
radish peroxidase-conjugated secondary antibodies followed
by ECL detection. The concentration of Shh protein and serum
insulin level was measured using the ELISA kit (Elabsciences,
Wuhan, China) according to the manufacturer’s instructions.

For immunoprecipitation, cell lysates were incubated with
the appropriate antibodies or control IgG at 4 °C overnight fol-
lowed by incubation with protein A/G-Sepharose beads.
Immunoprecipitates were washed with NETN buffer (100 mM

NaCl, 1 mM EDTA, 20 mM Tris, pH 8.0, and 0.5% Nonidet P-40).
Band intensity was quantified with ImageJ and normalized to
loading control.

Statistical analyses

Results are reported as mean � S.D. We examined the differ-
ences between groups using Student’s t test (comparison of two
groups) or one-way analysis of variance (comparisons more
than two groups) test with a Bonferrioni test to correct for mul-
tiple comparison testing. For body weight, glucose tolerance
test, and insulin tolerance test, we conducted a repeated mea-
sures analysis of variance followed by a LSD post hoc test and a
Bonferrioni test to correct for multiple comparison testing. p
values �0.05 were considered significant.
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